Содержание

Памятка : «Решение уравнений», 5 класс

Уравнения

(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое

Х – 87 = 36 + 27;

Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое

Х= 87 + 63;

Х=150,

Проверка: (150 – 87) – 27 = 36;

63-27 = 36;

36 = 36.

Ответ: Х=150.

87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность

41 + У = 87 – 22;

41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое

У = 65 – 41;

У = 24,

Проверка: 87- ( 41 + 24 ) = 22;

87 – 65 = 22;

22 = 22,

Ответ: У = 24

(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое

у – 35 = 32 – 22;

у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое

у = 20 + 35;

у=55.

Ответ: у = 55.

56 — (Х +12) = 24;

55 – (х – 15) = 30;

1 способ

56 — (Х +12) = 24;

Х + 12 = 56 -24;

Х + 12=32;

Х = 32 – 12;

Х = 20.

Ответ: х = 20

2 способ

56 — (Х +12) = 24;

56 — Х — 12 = 24;

56- 12 — Х = 24;

44 – Х = 24;

Х = 44 – 24;

Х = 20.

Ответ: х = 20

1 способ

55 – (х – 15) = 30;

х – 15 = 55 – 30;

х – 15 = 25;

х = 25 + 15;

х = 40.

Ответ: х = 40.

2 способ

55 – (х – 15) = 30;

55 – х + 15 = 30;

55 + 15 – х = 30;

70 – х = 30;

х = 70 – 30;

х =40.

Ответ: х = 40.

(237 + х) – 583 = 149;

468 – ( 259 – х) = 382;

1 способ

(237 + х) – 583 = 149;

237 + х = 149 + 583;

237 + х = 732;

х = 732 — 237;

х = 495.

Ответ: х = 495

2 способ

(237 + х) – 583 = 149;

237 + х – 583 = 149;

х – (583 – 237) = 149;

х – 346 = 149;

х = 149 + 346;

х = 495.

Ответ: х = 495

1 способ

468 – ( 259 – х) = 382;

259 – х = 468 – 382;

259 – х = 86;

х = 259 – 86;

х = 173.

Ответ: х = 173.

2 способ

468 – ( 259 – х) = 382; 468 – 259 + х = 382;

209 + х = 382;

х = 382 – 209:

х = 173.

Ответ: х = 173.

Решение уравнений, приведение подобных слагаемых

Пример 1: 8х-х=49; сначала запишем знаки умножения,

8*х-1*х=49; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)

Х*(8-1)=49;

Х*7=49; х является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель

Х=49:7;

Х=7.

Проверка:

8*7-7=49;

56-7=49;

49=49.

Ответ: х=7.

Пример 2: 2х+5х+350=700; воспользуемся распределительным свойством (вынесем общую переменную за скобки)

Х*(2+5)+350=700; приведем подобные слагаемые (т.е. сложим числа в скобках)

7х+350=700;

является неизвестным слагаемым. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое

7х=700-350;

7х=350; х является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель

Х=350:7;

Х=50.

Проверка:

2*50 + 5*50 + 350 = 700;

100 + 250 + 350 = 700;

700=700.

Ответ: х = 50

Пример: 270: х + 2 = 47;

(270 : х — является слагаемым.

Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое

270 : х = 47 – 2;

270 : х = 45;

( х является делителем. Чтобы найти неизвестный делитель, нужно делимое разделить на частное)

Х = 270 : 45:

Х= 6.

Ответ: Х= 6.

Пример: а : 5 – 12 = 23;

( а : 5 является уменьшаемым.

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое )

а : 5 =23 + 12;

а : 5 = 35;

(а является делимым. Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

а = 35 * 5;

а = 175.

Ответ: а = 175.

ГДЗ. Математика 5 класс Тарасенкова. Уравнения.

Категория: —>> Математика 5 класс Тарасенкова.

Задание:  —>>      553 — 569  570 — 586 



наверх

  • Задание 553
  • Задание 554
  • Задание 555
  • Задание 556
  • Задание 557
  • Задание 558
  • Задание 559
  • Задание 560
  • Задание 561
  • Задание 562
  • Задание 563
  • Задание 564
  • Задание 565
  • Задание 566
  • Задание 567
  • Задание 568
  • Задание 569

Задание 553.

Какое из чисел 4. 5, 8 и 10 является корнем уравнения:

Решение:
1) 5;2) 10;3) 4.

Задание 554.

Решите уравнение устно:

Решение:
1) 15 + x: = 55,  x = 40;3) 60 — y = 45,  y = 15;5) 88 : x = 8,  x = 11;
2) х — 22 = 42,  x = 64;4) у * 12 = 12,  y = 1;6) у : 10 = 40,  y = 400.

Задание 555.

Можно ли решить уравнение:

1) 8x = 0;2) 0 : y = 25;3) 5х = 54) 12 : y = 0?

Решение:

1) x = 0;
2) Не имеет решений;
3) x = 1;
4) Не имеет решений;




Задание 556.

Решите уравнение:

Решение:
1)28 + (45 + х) = 100;

  • 45 + x = 100 — 28;
  • 45 + x = 72;
  • x = 72 — 45;
  • x = 27;

2) (у — 25) + 18 = 40;

  • y — 25 = 40 — 18;
  • y — 25 = 22;
  • y = 22 + 25;
  • y = 47;

3) (70 — х) — 35 = 12;

  • 70 — x = 35 + 12;
  • 70 — x = 47;
  • x = 70 — 47;
  • x = 23;

4) 60 -(y + 34) = 5;

  • y + 34 = 60 — 5;
  • y + 34 = 55;
  • y = 55 — 34;
  • y = 21;

5) 52 — (19 + х) = 17;

  • 19 + x = 52 — 17;
  • 19 + x = 35;
  • x = 35 — 19;
  • x = 16;

6) 9y — 18 = 72;

  • 9y = 72 + 18;
  • 9y = 90;
  • y = 90 : 9;
  • y = 10;

7) 20 + 5х = 100;

  • 5x = 100 — 20;
  • 5x = 80;
  • x = 80 : 5;
  • x = 16;

8) 90 — y * 12 = 78;

  • y * 12 = 90 — 78;
  • y * 12 = 12;
  • y = 12 : 12;
  • y = 1;

9) 10х — 44 = 56;

  • 10x = 56 + 44;
  • 10x = 100;
  • x = 100 : 10;
  • x = 10;

10) 84 — 7у = 28;

  • 7y = 84 — 28;
  • 7y = 56;
  • y = 56 : 7;
  • y = 8;
11) 121 : (х — 45) = 11;

  • x — 45 = 121 : 11;
  • x — 45 = 11;
  • x = 45 + 11;
  • x = 56;

12) 77 : (у + 10) = 7;

  • y + 10 = 77 : 7;
  • y + 10 = 11;
  • y = 11 — 10;
  • y = 1;

13) (х — 12) : 10 = 4;

  • x — 12 = 10 * 4;
  • x — 12 = 40;
  • x = 40 + 12;
  • x = 52;

14) 55 — y * 10 = 15;

  • y * 10 = 55 — 15;
  • y * 10 = 40;
  • y = 40 : 10;
  • y = 4;

15) х : 12 + 48 = 91;

  • x : 12 = 91 — 48;
  • x : 12 = 43;
  • x = 43 * 12;
  • x = 516;

16) 5y + 4y = 99;

  • 9y = 99;
  • y = 99 : 9;
  • y = 11;

17) 54х — 27х = 81;

  • 27x = 81;
  • x = 81 : 27;
  • x = 3;

18) 36y — 16y + 5y = 0;

  • 25y = 0;
  • y = 0 : 25;
  • y = 0;

19) 14х + х — 9х + 2 = 56;

  • 6x + 2 = 56;
  • 6x = 56 — 2;
  • 6x = 54;
  • x = 54 : 6;
  • x = 9;

20) 20y — 14у + 7у — 13 = 13.

  • 13y — 13 = 13;
  • 13y = 13 + 13;
  • 13y = 26;
  • y = 26 : 13;
  • y = 2;

Задание 557.

Решите уравнение:

Решение:
1) 65 + (х + 23) = 105;

  • x + 23 = 105 — 65;
  • x + 23 = 40;
  • x = 40 — 23;
  • x = 17;

2) (у — 34) — 10 = 32;

  • y — 34 = 32 + 10;
  • y — 34 = 42;
  • y = 42 + 34;
  • y = 76;

3) (48 — х) + 35 = 82;

  • 48 — x = 82 — 35;
  • 48 — x = 47;
  • x = 48 — 47;
  • x = 1;

4) 77 — (28 + y) = 27;

  • 28 + y = 77 — 27;
  • 28 — y = 50;
  • y = 50 — 28;
  • y = 22;

5) 90 + y * 8 = 154;

6) 9х + 50 = 86;

  • 9x = 86 — 50;
  • 9x = 36;
  • x = 36 : 9;
  • x = 4;

7) 120 : (х — 19) = 6;

  • x — 19 = 120 : 6;
  • x — 19 = 20;
  • x = 19 + 20;
  • x = 39;

8)(y + 50) : 14 = 4;

  • y + 50 = 14 * 4;
  • y + 50 = 56;
  • y = 56 — 50;
  • y = 6;

9) 48 + у : 6 = 95;

  • y : 6 = 95 — 48;
  • y : 6 = 47;
  • y = 6 * 47;
  • y = 282;

10) 8х + 7х — х = 42.

  • 14x = 42;
  • x = 42 : 14;
  • x = 3;

Задание 558.

Составьте уравнение, корнем которого является число:

а) 8;б) 14.

Решение:
а) 2y = 16;б) x + 7 = 21.

Задание 559.

Составьте уравнение, корнем которого является число.

а) 5;б) 9.

Решение:
а) 25 : x = 5;б) 5x = 45.

Задание 560.

Некоторое число увеличили на 67 и получили число 109. Найдите это число.

Решение:
  • Некоторое число — x.
  • x + 67 = 109;
  • x = 109 — 67;
  • x = 42.
  • Ответ: число 42.

Задание 561.

К некоторому числу прибавили 38 и получили число 245. Найдите это число.

Решение:
  • x + 38 = 245;
  • x = 245 — 38;
  • x = 207.
  • Ответ: 207.

Задание 562.

Некоторое число увеличили в 24 раза и получили число 1968. Найдите это число.

Решение:
  • 24x = 1968;
  • x = 1968 : 24;
  • x = 82.
  • Ответ: 82.

Задание 563.

Некоторое число уменьшили в 18 раз и получили число 378. Найдите это число.

Решение:
  • x : 18 = 378;
  • x = 378 * 18;
  • x = 6804.
  • Ответ: 6408.

Задание 564.

Некоторое число уменьшили на 22 и получили число 105. Найдите это число.

Решение:
  • x — 22 = 105;
  • x = 105 + 22;
  • x = 127.
  • Ответ: 127.

Задание 565.

Из числа 128 вычли некоторое число и получили 79. Найдите это число.

Решение:
  • 128 — x = 79;
  • x = 128 — 79;
  • x = 49.
  • Ответ: 49.

Задание 566.

Составьте и решите уравнение:

  • 1) сумма удвоенного числа х и числа 39 равна 81;
  • 2) разность чисел 32 и y в 2 раза меньше числа 64;
  • 3) частное суммы чисел х и 12 и числа 2 равно 40;
  • 4) сумма чисел х и 12 в 3 раза больше числа 15;
  • 5) частное разности чисел у и 12 и числа 6 равно 18;
  • 6) утроенная разность чисел у и 17 равна 63.

Решение:
  • 1) 2x + 39 = 81
    • 2x = 81 — 39;
    • 2x = 42;
    • x = 42 : 2;
    • x = 21;
  • 2) (32 — y) * 2 = 64
    • 32 — y = 64 : 2;
    • 32 — y = 32;
    • y = 32 — 32;
    • y = 0;
  • 3) (x + 12) : 2 = 40
    • x + 12 = 40 * 2;
    • x + 12 = 80;
    • x = 80 — 12;
    • x = 68;
  • 4) (x + 12) : 3 = 15
    • x + 12 = 15 * 3;
    • x + 12 = 45;
    • x = 45 — 12;
    • x = 33;
  • 5) (y — 12) : 6 = 18
    • y — 12 = 18 * 6;
    • y — 12 = 108;
    • y = 108 + 12;
    • y = 120;
  • 6) (y — 17) * 3 = 63
    • y — 17 = 63 : 3;
    • y — 17 = 21;
    • y = 21 + 17;
    • y = 38;

Задание 567.

Составьте и решите уравнение:

  • 1) разность утроенного числа у и числа 41 равна 64;
  • 2) сумма чисел 9 и х в 5 раз меньше числа 80;
  • 3) частное суммы чисел у и 10 и числа 4 равно 16;
  • 4) разность утроенного числа х и числа 17 равна 10.

Решение:
  • 1) 3y — 41 = 64
    • 3y = 64 + 41;
    • 3y = 105;
    • y = 105 : 3;
    • y = 15;
  • 2) (9 + x) * 5 = 80
    • 9 + x = 80 : 5;
    • 9 + x = 16;
    • x = 16 — 9;
    • x = 7;
  • 3) (y + 10) : 4 = 16
    • y + 10 = 16 * 4;
    • y + 10 = 64;
    • y = 64 — 10;
    • y = 54;
  • 4) 3x — 17 = 10
    • 3x = 10 + 17;
    • 3x = 27;
    • x = 27 : 3;
    • x = 9;

Задание 568.

Некоторое число увеличили на 5 и полученное число удвоили. В результате получили число 22. Найдите неизвестное число.

Решение:
  • (x + 5) * 2 = 22;
  • x + 5 = 22 : 2;
  • x + 5 = 11;
  • x = 11 — 5;
  • x = 6;

Задание 569.

Некоторое число увеличили в 7 раз и полученное число уменьшили на 54. В результате получили число 100. Найдите неизвестное число.

Решение:
  • 7x — 54 = 100;
  • 7x = 100 + 54;
  • 7x = 154;
  • x = 154 : 7;
  • x = 22;



Задание:  —>>      553 — 569  570 — 586 

Методическая разработка по алгебре (5 класс) на тему: Способ подстановки для решения сложных уравнений в 5-6 классах

Решение сложных уравнений в 5-6 классах способом подстановки.

В 5-6 классах учащиеся затрудняются решать уравнения такого типа, как

(х + 39) – 43 =27.

Традиционное объяснение в должной мере воспринимают только сильные ученики, а для слабых – это тайна за семью печатями. Каково же традиционное объяснение решения такого уравнения? Чтобы найти уменьшаемое х + 39, надо к вычитаемому 43 прибавить разность 27:

х + 39 = 43 + 27;

х + 39 = 70.

Далее рассуждают так: чтобы найти неизвестное слагаемое Х, надо из суммы 70 вычесть другое слагаемое 39:

х = 70 – 39;

х = 31.

В большинстве случаев ученики не видят в этом уравнении вычитаемого 43 и уменьшаемого Х + 39. Поэтому я разработала алгоритм решения таких уравнений. Суть этого приёма состоит в том, чтобы любое сложное уравнение свести к простейшему. Главное, иметь хороший навык решения простейших уравнений. Рассмотрим применение этого алгоритма на конкретных примерах.

1) ( х+ 121) + 38 = 269.

Обозначим выражение, стоящее в скобках через a:  х + 121 = а.

Тогда получим такое уравнение:

а + 38 = 269;

а = 269 – 38;

а = 231.

Теперь возвращаемся к выражению, стоящему в скобках:

х + 121 = а;

х + 121 = 231;

х = 231 – 121;

х = 110.

Ответ: 110.

2) ( m – 379) + 125 = 3000                              

Подстановка  m – 379 = а;

а + 125 = 3000;

а = 3000 – 125;

а = 2875;

m – 379 = 2875;

m = 2875 + 379;

m = 3254.

3) ( 127 + р ) – 89 = 1009.

Подстановка  127 + р = а;

а – 89 = 1009;

а = 1009 + 89;

а = 1098;

127 + р = 1098;

р = 1098 – 127;

р = 971.

4) ( х – 315 ) – 27 = 36.

Подстановка  х – 315 = а;

а – 27 = 36;

а = 36 + 27;

а = 63;

х – 315 = 63;

х = 315 + 63;

х = 378.

5) 872 – ( 407 +  с ) = 122

 Подстановка  407 + с = а;

872 – а = 122;

а = 872 – 122;

а = 750;

407 + с = 750;

с = 750 – 407;

с = 343.

6) (7001+ х).42 = 441000

Подстановка  7001 + х = а;

а . 42 = 441000;

а = 441000 : 42;

а = 10500;

7001 + х = 10500;

х = 10500 – 7001;

х = 3499.

Таким образом, очень хорошо видно, что с помощью данного приёма очень легко решаются такие сложные уравнения.

Для тех учащихся, кто так и не усвоил правил нахождения неизвестных: слагаемого, вычитаемого, множителя и т.д., я использую при решении простейших уравнений  приём «по аналогии».

Например, нужно решить уравнение: х – 128 = 312.

В стороне от этого уравнения слабый ученик записывает простейший арифметический пример  5 — 3 = 2.

Ученик смотрит, где в этом примере должен стоять х (на месте 5). Как из этого простого примера найти 5. Надо к 3 прибавить 2. Значит, и в уравнении, чтобы найти Х надо 128 сложить с 312.

Данный алгоритм решения уравнений служит пропедевтикой для решения в старших классах уравнений способом подстановки.

Линейные уравнения для 5 класса

Одним из самых важных навыков при поступлении в 5 класс является умение решать простейшие уравнения. Так как 5 класс ещё не так далек от начальной школы, то и видов уравнений, которые может решать ученик не так уж и много. Мы познакомим Вас со всеми основными видами уравнений, которые необходимо уметь решать, если Вы хотите поступить в физико-математическую школу.

1 тип: «луковичные»
Это уравнения, которые почти со вероятностью встретятся Вам при поступлении в любую школу или кружок 5 класса как отдельное задание. Их легко отличить от других: в них переменная присутствует только 1 раз. Например, или .
Решаются они очень просто: необходимо просто «добраться» до неизвестной, постепенно «снимая» всё лишнее, что окружает её — как будто почистить луковицу — отсюда и такое название. Для решения достаточно помнить несколько правил из второго класса. Перечислим их все:

Сложение

  1. слагаемое1 + слагаемое2 = сумма
  2. слагаемое1 = сумма — слагаемое2
  3. слагаемое2 = сумма — слагаемое1

Вычитание

  1. уменьшаемое — вычитаемое = разность
  2. уменьшаемое = вычитаемое + разность
  3. вычитаемое = уменьшаемое — разность

Умножение

  1. множитель1 * множитель2 = произведение
  2. множитель1 = произведение : множитель2
  3. множитель2 = произведение : множитель1

Деление

  1. делимое : делитель = частное
  2. делимое = делитель * частное
  3. делитель = делимое : частное

Разберём на примере, как применять данные правила.

Заметим, что мы делим на и получаем . В этой ситуации мы знаем делитель и частное. Чтобы найти делимое, нужно делитель умножить на частное:

Мы стали немного ближе к самому . Теперь мы видим, что к прибавляется и получается . Значит, чтобы найти одно из слагаемых, нужно из суммы вычесть известное слагаемое:

И ещё один «слой» снят с неизвестной! Теперь мы видим ситуацию с известным значением произведения () и одним известным множителем ().

Теперь ситуация «уменьшаемое — вычитаемое = разность»

И последний шаг — известное произведение () и один из множителей ()

2 тип: уравнения со скобками
Уравнения данного типа чаще всего встречаются в задачах — именно к ним сводится 90% всех задач для поступления в 5 класс. В отличие от «луковичных уравнений» переменная здесь может встретиться несколько раз, поэтому решить её методами из предыдущего пункта невозможно. Типичные уравнения: или
Основная трудность — это правильно раскрыть скобки. После того, как удалось это верно сделать, следует привести подобные слагаемые (числа к числам, переменные к переменным), а после этого мы получаем самое простое «луковичное уравнение», которое умеем решать. Но обо всём по-порядку.

Раскрытие скобок. Мы приведём несколько правил, которыми следует пользоваться в данном случае. Но, как показывает практика, верно раскрывать скобки ученик начинает только после 70-80 прорешанных задач. Основное правило таково: любой множитель, стоящий за скобками необходимо умножить на каждое слагаемое внутри скобок. А минус, стоящий перед скобкой, меняет знак всех выражений, что стоят внутри. Итак, основные правила раскрытия:

Приведение подобных. Здесь всё гораздо легче: Вам необходимо путём переноса слагаемых через знак равенства добиться того, чтобы с одной стороны стояли только слагаемые с неизвестной, а с другой — только числа. Основное правило таково: каждое слагаемое, переносимое через , меняет свой знак — если оно было с ,то станет с , и наоборот. После успешного переноса необходимо сосчитать итоговое количество неизвестных, итоговое число стоящее с другой стороны равенства, нежели переменные, и решить простое «луковичное уравнение».

Приведём пример:
(раскроем скобки. Обратите внимание на смену знаков!)
(выполним умножения)
(перенесём , и через знак равенства — они «превратятся» в , и )
(посчитаем итоговое количество справа и число слева)
(ситуация «известный множитель и произведение»)

Освоив эти два типа уравнений, Вы можете быть уверенны, что сможете решить добрую половину всех заданий во вступительной олимпиаде в 5 класс.

Самостоятельная работа по математике — 5 класс: Уравнения, задачи на уравнения, порядок действий. Вариант-1

hello_html_648175e3.gifhello_html_648175e3.gifhello_html_m43365b70.gifСамостоятельная работа по математике — 5 класс: уравнения, задачи на уравнения, порядок действий.

Вариант-1
№1. У Пети было в 5 раз меньше карандашей, чем у Маши. При этом у Маши было на 12 карандашей больше. Сколько было карандашей у каждого ребенка?

№2. Решите уравнения: а) 3*(x+4)-12=24; б)45:(17-x)+9=24;

№3. Вычислите: 23*5-(12+4*2):5+13

Вариант-2
№1. Для приготовления мороженого взяли 3 части молока, 2 части сахара и 1 часть масла. Всего мороженое весило 120 грамм. Сколько грамм сахара взяли?

№2. Решите уравнения: а) 54:(x-7)+22=31; б)(29-x)*2-7=45;

№3. Вычислите: 27*2-54:(16+34:17)

Самостоятельная работа по математике — 5 класс: уравнения, задачи на уравнения, порядок действий.

Вариант-1
№1. У Пети было в 5 раз меньше карандашей, чем у Маши. При этом у Маши было на 12 карандашей больше. Сколько было карандашей у каждого ребенка?

№2. Решите уравнения: а) 3*(x+4)-12=24; б)45:(17-x)+9=24;

№3. Вычислите: 23*5-(12+4*2):5+13

Вариант-2
№1. Для приготовления мороженого взяли 3 части молока, 2 части сахара и 1 часть масла. Всего мороженое весило 120 грамм. Сколько грамм сахара взяли?

№2. Решите уравнения: а) 54:(x-7)+22=31; б)(29-x)*2-7=45;

№3. Вычислите: 27*2-54:(16+34:17)

Задачи по математике для учеников 5 класса на составление уравнений.

Задача №11. Для приготовления салата берут 4 части помидор, 3 части огурцов и 1 часть зелени. Всего получилось 480 грамм салата. Сколько грамм помидор было взято?
Задача №12. У Веры было в 5 раз больше слив, чем у Даши. При этом у Даши было на 16 слив меньше. Сколько слив было у Даши? У Веры?
Задача №13. У Дениса было в 3 раз больше монет, чем у Васи. А у Димы в 2 раза больше монет, чем у Дениса. Всего же монет было 50. Сколько монет было у Васи? У Дениса?
Задача №14. Для приготовления варенья взяли 4 части сахара и 7 частей фруктов. Всего получилось 660 грамм варенья. Сколько грамм сахара было взято?

Задачи по математике для учеников 5 класса на составление уравнений.

Задача №6. У Насти было в 3 раза больше груш, чем у Иры. При этом, у Иры было на 14 груш меньше, чем у Насти. Сколько груш было у Иры? У Насти?

Задача №7. Для приготовления теста взяли 5 частей муки, 2 части молока и 1 часть масла. Общий вес теста составил 960 грамм. Сколько грамм молока было взято?

Задача №8. У Ивана было в 6 раз меньше мандарин, чем у Пети. При этом у Пети было на 15 мандарин больше. Сколько мандарин было у Ивана? У Пети?

Задача №9. Мальчик проехал на автобусе 3 части пути от дома, а пешком прошел 2 части пути. Всего же он преодолел 15 км. Сколько км мальчик прошел?

Задача №10. У Вики было в 4 раза меньше апельсин, чем у Оли. При этом у Оли было на 12 апельсин больше, чем у Вики. Сколько апельсин было у Вики? У Оли?

Математика 5 класс: Уравнения и составление уравнений по условию задачи.

Решите уравнения:

Задание по математике №1.

а) 34-x+12=9; б)4x-(12-25+3x)=87.

Задание по математике №2.

а) 5x-(7+8+4x)=56; б)12-2x+3x-7=29;

Задание по математике №3.

а) 4x+(15-3x)-12=26; б)23-x+1=11

Задание по математике №4.

а)27-(x-3)+12=10; б)2x-4-13-x=47;

Задание по математике №5.

а) (21+x)-34=11; б)19+(13-7x+8x)=59;

Задачи на составление уравнений:

Карточка №6. Составьте уравнение по условию задачи и решите его:

В корзине было неизвестное количество яблок. Сначала  из нее взяли 12 яблок, а потом положили туда 5 яблок. В результате в корзине стало 24 яблока. Сколько яблок было в корзине первоначально?

Карточка №7. Составьте уравнение по условию задачи и решите его:

В корзине было 15 груш. Сначала из нее взяли 7 груш, а потом положили в нее неизвестное количество груш. В результате в корзине стало 34 груши. Сколько груш положили в корзину?

Карточка №8. Составьте уравнение по условию задачи и решите его:

В коробке было 65 конфет. Вначале из нее взяли неизвестное количество конфет, а потом доложили 7 конфет. В результате в  коробке стало  34 конфеты. Сколько конфет было взято?

Карточка №9. Составьте уравнение по условию задачи и решите его:

Турист прошел часть пути за 45 минут, затем отдыхал неизвестное количество времени, и оставшуюся  часть  пути  прошел за 34 минуты. В результате весь путь турист преодолел за 2 часа 18 минут. Сколько минут отдыхал турист?

Карточка №10. Составьте уравнение по условию задачи и решите его:

Температура воздуха была 23 градуса. В первый день она опустилась на неизвестное количество градусов, а во второй день поднялась на 5 градусов. В результате температура воздуха стала 19 градусов.

На сколько градусов опустилась температура в первый день?

Урок по математике на тему «Решение уравнений» (5 класс)

Урок математики в 5-м классе по теме «Решение уравнений»

Учитель: Миначова Ф.М.

Класс: 5 «А»

Дата проведения урока: 29.10.2013

Учебник: Математика 5 класс, Н.Я.Виленкин, Мнемозина, 2010

Цель: Формирование навыков решения сложных (составных) уравнений двумя способами: с помощью нахождения неизвестного компонента действия; с помощью применения свойств сложения и вычитания для упрощения одной из частей уравнений.

Задачи:

  • Обеспечить применение учащимися теоретических знаний об уравнении — понятий: «уравнение», «корень уравнения», «что значит решить уравнение» при выполнении практических заданий.

  • Создать условия для формирования умения решать уравнения на основе знаний взаимосвязи компонентов действий (и применяя свойства действий сложения и вычитания).

  • Организовать деятельность учащихся по самостоятельному применению знаний в стандартной и изменённой ситуации.

  • Создать условия для развития математического кругозора учащихся, мышления, творческой активности, памяти и внимания.

  • Создать условия для воспитания культуры общения, аккуратности, организованности.

Оборудование: Проектор, раздаточный материал.

Ход урока

I. Организационный этап

  1. Приветствие учителя.

  2. Проверка подготовленности учащихся к уроку.

  3. Организация внимания учащихся и сообщение темы и целей урока.

Здравствуйте ребята! Начинаем урок. Проверьте всё ли у вас для этого готово? (учебники, рабочие тетради, раздаточный материал) Сегодня на уроке мы будем решать уравнения, которые характеризуются как сложные или составные, так как они содержат не одно, а два (а то и несколько) действий. Но я бы применила другое определение – интересные уравнения. Ведь чем больше действий в арифметическом примере или текстовой задаче, тем интереснее их решать. Не правда ли?  И сегодня наша цель: научиться решать составные уравнения различными способами. А вот девиз урока: «Решай, ищи, твори и мысли»

II. Проверка выполнения домашнего задания.

Но сначала проверим как вы справились с домашним заданием.

№ д.з.

Учитель

Ученик

Ответ

397 (в)

Какое уравнение вы составили для решения данной задачи?

(х+10) – 12 =17

(х+10) – 12 =17

395 (д)

166 = m – 34

Что нужно найти в уравнении?

В уравнении нужно было найти неизвестное уменьшаемое.

Как найти неизвестное вычитаемое?

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

m = 166 + 34

Какой получили ответ?

200

395 (е)

59 = 81 – k

Что нужно найти в уравнении?

В уравнении нужно было найти неизвестное вычитаемое.

Как найти неизвестное вычитаемое?

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

k = 81 – 59

Какой получил ответ?

22

397 (б)

Какое уравнение вы составили для решения задачи?

350 + х = 900

350 + х = 900

Что нужно найти в уравнении?

В уравнении нужно было найти неизвестное слагаемое

Как найти неизвестное слагаемое?

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

х = 900 – 350

Какой ответ?

550 г сахара добавили в пакет.

550

II. Актуализация знаний.

Ребята приготовьте карточки №1, которые я раздала вам перед уроком.

Учитель

Ученик (правильный ответ)

Что такое уравнение?

Уравнение – это равенство с переменной.

Что такое корень уравнения?

Корень уравнения – это число, при подстановке которого в исходное уравнение последнее обращается в верное равенство.

Что значит решить уравнение?

Решить уравнение – это значит найти все его корни или доказать, что корней нет.

Карточка № 1

Определите под каким номером записано уравнение?

3, 6, 9

х – 405 = 138

(устно) Найдите корень уравнения по номером 9.

543

х + 357 = 1204

(устно) Найдите корень уравнения по номером 3.

847

1570 – х = 614

(устно) Найдите корень уравнения по номером 6.

956

Карточка № 1

А что записано под остальными номерами?

Под номером 1 записано числовое равенство, под номерами 2, 4, 5, 7, 8 записаны буквенные выражения.

Что такое буквенное выражение?

Буквенное выражение – это запись чисел и букв, связанных между собой знаками действий.

Как можно прочитать выражение?

Выражение можно прочитать по последнему действию.

Что значит упростить выражение?

Упростить выражение – это значит выполнит все возможные действия.

С помощью чего можно упростить выражение?

Упростить выражение можно с помощью свойств сложения, вычитания, умножения.

Карточка № 1

Используя свойства сложения и вычитания упростите выражения:

(Записи в тетради)

2. х + 4 + 18

Какое свойство можно применить для упрощения данного выражения?

Можно применить сочетательное свойство сложения х + 4 + 18 = х + (4 + 18) = х + 22

4. 69 – х – 20

Какое свойство можно применить для упрощения данного выражения?

Можно применить свойство вычитания суммы из числа 69 – х – 20 = 69 – (х + 20) = 69 – 20 – х = 49 – х

5. 57 + (х + 23)

Какое свойство можно применить для упрощения данного выражения?

Можно применить сочетательное свойство сложения 57 + (х + 23) = 57 + 23 + х = 80 + х

7.(138 + х) – 95

Какое свойство можно применить для упрощения данного выражения?

Можно применить свойство вычитания числа из суммы (138 + х) – 95 = 138 – 95 + х = 43 + х

8. 41 – (х + 23)

Какое свойство можно применить для упрощения данного выражения?

Можно применить свойство вычитания суммы из числа 41 – (х + 23) = 41 – 23 – х = 18 – х

III. Устный счёт.

Раздать учащимся первых парт карточки для устного счёта. Вычисление цепочкой по рядам «Какой ряд быстрее».

№ парты (пары)

Условие задания

Ответ

1

Наименьшее трёхзначное число уменьшить в 2 раза

50

2

Полученное число уменьшить на 37

13

3

Полученный ответ умножить на 4

52

4

Получившееся число увеличить на 18

70

5

Ответ уменьшить в 10 раз

7

6

Полученное число умножить само на себя

49

7

К полученному произведению прибавить 11

60

8

Проверить все вычисления и поднять руку, если всё правильно. Если есть ошибки, исправить.

IV. Решение уравнений.

А сейчас приступим к решению сложных (составных) уравнений. Рассмотрим два способа решения следующего уравнения:

(60 + у) – 25 = 72.

I способ. Вопрос учителя: Какое выражение записано в левой части уравнения? Ответ учащегося: В левой части уравнения записана разность. Учитель: Назовите уменьшаемое. Учащийся: (60 + y). Учитель: Назовите вычитаемое. Учащийся: 25. Найдем неизвестное уменьшаемое:

60 + у = 72 + 25,

60 + у = 97, в результате получили простое уравнение, из которого находим неизвестное слагаемое

у = 97 – 60

у = 37

Проверка: (60 + 37) – 25 = 72

II способ. Сначала упростим выражение, стоящее в левой части уравнения, используя свойства вычитания:

(60 – 25) + у = 72,

35 + у = 72, в результате получили простое уравнение, из которого находим неизвестное слагаемое

у = 72 — 35,

у = 37.

Проверка: (60 + 37) – 25 = 72

Ответ: 37.

Физкультминутка.

Таким образом Составные уравнения можно решить, применяя один из разобранных способов. Вспомним девиз урока: «Решай, ищи, твори и мысли» и выполним из учебника № 376 (а, в, д) (решить уравнения двумя способами).

V. Итог урока.

Этап контроля и самоконтроля.

Исторический экскурс

Ребята, а знаете ли вы, кто и когда придумал первое уравнение? По-видимому, ответить на этот вопрос невозможно. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян и пошли дальше. Наибольших успехов в развитии учения об уравнениях достиг греческий учёный Диофант (III век).

В дальнейшем многие математики занимались проблемами уравнений. Одним из них был французский математик, имя которого вы узнаете, если выполните задания, предложенные для самостоятельной работы.

Задания для самостоятельной работы. (карточки №2)

Вариант 1

Вариант 2

  1. Решите уравнение у – 409 = 511.

  2. Решите уравнение (24 -х) + 37 = 49.

  3. Решите уравнение 23 + х = 50.

  4. Решите с помощью уравнения задачу.
    Если из задуманного числа вычесть 234, то получится 110. Каково задуманное число?

  1. Решите уравнение 700 – х = 605.

  2. Решите уравнение (57 – у) +24 = 49.

  3. Решите уравнение х + 47 = 60.

  4. Решите с помощью уравнения задачу.
    Катя задумала число. Если вычесть его из числа 348, то получится 185.
    Какое число задумала Катя?

 

73   Л   217

32   Т   12

27   И   13

163   Е    344

95   В   920

495   А   107

Франсуа Виет жил в 16 веке. Он внёс большой вклад в изучение различных проблем математики и астрономии. Более подробно о некоторых его работах мы поговорим в 8 классе.

Рефлексия. (карточка № 3). Учащиеся заполняют таблицу и дают оценку своей работе на уроке.

hello_html_11090369.pnghello_html_11090369.png

Методическая разработка по алгебре (5 класс) на тему: Урок математики в 5 классе по теме «Решение сложных уравнений»

Урок математики в  5 классе по теме «Решение уравнений».
(Учебник Э.Г. Гельфман и др.Математика 5. Часть1 по программе «Математика. Психология. Интеллект» 2004г)

Подготовила: учитель математики МОУ Рековичской средней школы Михалева Л.И.

Цели урока: воспитывать у учащихся  коммуникабельность, уверенность в себе, прививать интерес к предмету; развивать умение анализировать обобщать, делать выводы, умение читать чертежи, схемы и составлять по ним уравнения ; ввести алгоритм решения сложных уравнений, содержащих скобки и отработать его при решении уравнений

Комментарий учителя: При выполнении заданий устных заданий учащиеся работают с помощью сигнальных карточек. Один из учащихся называет результат, а остальные реагируют с помощью сигнальных карточек. Зеленая карточка – правильный ответ. Красная – неправильный.

Ход урока.

  1. Оргмомент.
  2. Решение устных заданий на повторение.

Решите устно следующие  задачи.( Учащиеся используют сигнальные карточки)

  • Повторим как найти длину всего отрезка, если известны длины его частей?
  • Как найти часть отрезка, если известна длина всего отрезка и длина другой части?
  1. Мини самостоятельная работа.5 мин

1)Словарная работа. Учащимся раздаются задания с пропуском букв и слов(математических терминов).

  • Ур…внение – 1) ____________________________

                         2) содержащее букву.

  • Сама буква называется _________________.
  • Значение неизве…..ого, при подстановке которого в ур…внение получается верное числовое равенство, называется ___________ ур…внения.

2)Задание на понятие корня уравнения.

Является ли число 4,8 корнем уравнения у-2,9=1,9?

Взаимопроверка в парах по слайду.

  1. Решение заданий на составление уравнения по схеме

№ 169 (а,б) по слайду. Задание а) выполняется под руководством учителя, б) одним из учащихся.

(в,г) – самостоятельно по рисунку в учебнике. Самопроверка по слайду.

№170(1, 2,3 ) (По слайду)

5.  Введение алгоритма решение сложных уравнений

Рассмотрите какие уравнения у нас получились. Есть простые, а есть очень сложные . На уроках математике мы будем учиться решать такие уравнения. А сегодня мы научимся решать последнее уравнение. №170(4)

(Согласно слайду разобрать способы решения уравнения.)

1 способ. Решаем уравнение с помощью переместительного и сочетательного законов сложения.

5+х+3,7=15

5+3,7+х=15

8,7+х=15

Х=15-8,7

Х=6,3

Проверка: 5+6,3+3,7=15-верно

Ответ: 6,3.

2 способ. – более универсальный. Его мы разберем более подробно.

Решение уравнения

Алгоритм решения

5  +    (х+3,7)  =15

5  +    (х+3,7)  =15

5  +    (х+3,7)  =15

(х+3,7)  =15 -5

х + 3,7  =10

х =10-3,7

х= 6,3

Пр-ка: 5+(6,3+3,7)=15 – верно

  Ответ: 6,3

1. Расставить порядок действий.

2.Последнее действие обведите в кружочек.

3. Обведите в квадратик действие, содержащее неизвестное.

4. Назовите, каким компонентом  является этот квадратик.

5 Найдите его.

6. Выполняйте действия 3-5 до тех пор, пока не найдете неизвестное.

  1. Закрепление 

№172(б,а) решаем у доски

      №171 (а) карандашом в учебнике ( задание с пропусками).

  1. Итог урока. 
  • Чем занимались на уроке?
  • Что нового узнали, чему научились?
  • Что было интересно?

Выставление отметок за урок.

  1. Д/з 

№172(в,г)

      №173(в,г)

Проверь себя с 250 №2,

№5*( сильным учащимся).