Онлайн урок: Решение уравнений по предмету Математика 6 класс

Решить линейное уравнение с одним неизвестным вида a ∙ x = b — это значит найти все его корни или доказать, что корней нет.

Наличие и количество корней линейного уравнения зависит от значений коэффициента а и значения свободного члена уравнения b.

1. Линейное уравнение при a ≠ 0 и — любое число, будет иметь один единственный корень; это значит, что неизвестная имеет единственное верное решение, при котором уравнение обращается в верное равенство.

Известно, что деление — это обратное действие умножению (т.е. по известному множителю и произведению можно определить неизвестный множитель).

Следовательно, решение уравнения a ∙ x = b, где a ≠ 0 выглядит так:

x = b ÷ a

или \(\mathbf{x = \frac{b}{a}}\) (это корень линейного уравнения).

2. Линейное уравнение при a = 0 и b ≠ 0 не имеет корней.

Если коэффициент а равен нулю, линейное уравнение запишется, как

0 ∙ x = b

Свойство умножения числа на нуль дает право утверждать, что при любом значении неизвестной х уравнение обращается в неверное равенство 0 = b.

Равенство 0 = b при b ≠ 0 неверно, а это значит, что в таком случае решения уравнения нет, т.е. уравнение не имеет корней.

3. Линейное уравнение при а = 0 и b = 0 имеет бесконечное множество корней, т.е. при любом значении неизвестной х уравнение обращается в верное равенство.

0 ∙ x = 0

0 = 0 (верное равенство)

Чтобы решить линейное уравнение необходимо выполнить ряд математических преобразований.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis
dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore
voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum
enim
fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

х – 7,2 = -7,3

х = – 7,3 – 7,2
1,8 – х = 1,9

1,8 – 1,9 = х
12х – 13 = 8х – 9

12х – 8х = -13 – 9